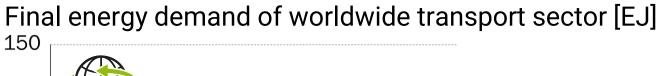
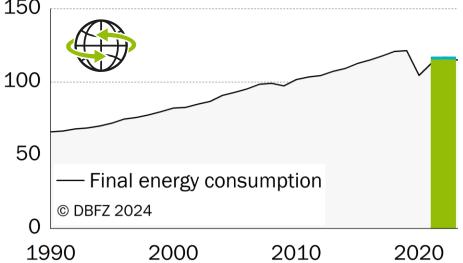


Bio-SAF | Produktionspfade und regulatorische Vorgaben

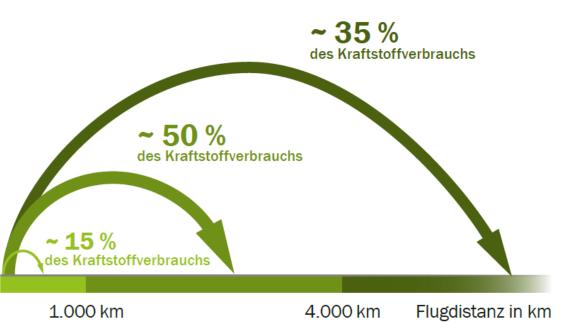
Kati Görsch


3. Konferenz Nachhaltiger Luftverkehr, 3. November 2025, Frankfurt (Main)



Status quo

Globaler Endenergiebedarf



Fuel consumption

	2023
Aviation	13 EJ

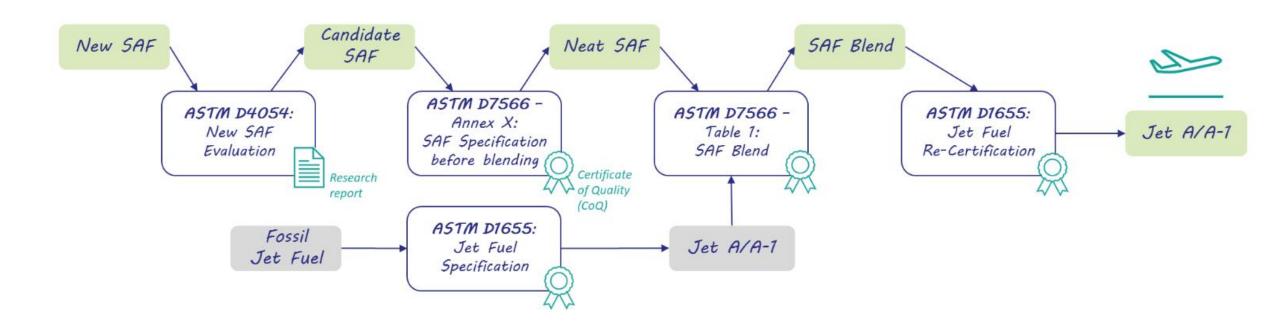
Calculation; 1 Mtoe = 41,87 PJ = 11,63 TWh

Source: Schröder, J.; Görsch, K.; Lenz, C. N. (2025): Herausforderung Energiewende im Verkehr. In: Schröder, J.; Görsch, K. (Hrsg.) (2025): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 4-21. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27 und Eigene Abbildung nach [Batteiger V., Penke C. (2025): Impuls | Energiewende in der Luftfahrt – Technische Herausforderungen. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 17-18. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27]

TRL / FRL

Technologie- und Kraftstoffentwicklung

Technologie- entwicklung	Technologi	egrundlagen	Labor / Te	echnikum	Pilotanlage	Der	moanlage	First-of-a-kind		Kommerziell	
Technologiestadien Wissensent modernster		g basierend auf ur	Versuche zur Grundlagen- ermittlung und Identifizierung von Unsicherheiten unter idealisierten		prozesse, Aufdecken von Tests (auch im D		ess, Produktion für Demonstration im Dauerbetrieb) der Bereit-	Technologie kommerziell verfügbar			
		Versuchsl		/ersuchsbedingungen		Unsicherheiten in Teiltechnologien, Sammlung von		stellung unter kommerziellen Bedingungen		Erweiterui	ng nach IEA
					Erfahrungen im Prozessverständnis			i 		Internationale Integration	Vorhersehbares Wachstum
Innovationsstufen	Grundlagenfor	schung	Angewandte For	schung		Technische	Entwicklung		Markteint	ritt Mar	ktetablierung
Technology Readiness Level (TRL)	1 Beobachtung des Funktions- prinzips	2 Entwicklung des Technologie- konzepts	3 Experimenteller Nachweis des Technologie- konzepts	4 Technologie- validierung im Labor/Technikum	5 Technologie- validierung unter relevanten Bedingungen	6 Technologie- demonstration unter relevanten Bedingungen	7 Demonstration eines Prototyps in Betriebsumgebung	8 Qualifizierung des Gesamtsystems unter realen Bedingungen	9 Erfolgsnachweis des Gesamtsystems	10 Markt- integration	11 Marktstabilität
					 			,			
Fuel Readiness Level (FRL)		1 Grundlagen dokumentiert	2 Technologie- konzept definiert	3 Konzept in Testphase	4 Vorläufige technische Evaluation	5 Prozess- validierung	6 Technische Evaluation im Großmaßstab	7 Kraftstoff- zulassung	8 Kommerziali- sierung validiert	9 Produktions- kapazitäten etabliert	
Typische Realisierung bis Markteinführung	(ezeiträume				6 bis > 15 Jain	е	3 bis 6 Jaine		1 bis 4 Jaine		
Kraftstoffstadien (vereinfacht)			gn, Rohstoffanalyse ur genschaften analysier		Untersuchung der m schaften, Analyse de schaften		Kraftstoffbewertung Bedingungen und Q relevanten Standar	ualifizierung nach	Geschäftsmodell validiert, Kaufver- trag geschlossen	Anlagenbetrieb im kommerziel- len Maßstab	
Kraftstoffentwicklung			Т	echnologiephas	se		Kraftstoffq	ualifizierung	Einsat	zphase	© DBFZ 2024


Quelle: Hauschild, S.; Costa de Paiva, G.; Tuschewitzki, W.; Prieß, T.; Mendler, F.; Neuling, U.; Zitscher, T.; Klüpfel, C.; Köchermann, J.; Thuneke, K.; Görsch, K. (2025): Technologien zur Kraftstoffbereitstellung. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 54-76. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27

Standardisierung

Marktzugangsbedingung für SAF

Strenger Prüf- und Zertifizierungsprozess

ASTM D7566

Überblick über Konversionspfade für SAF

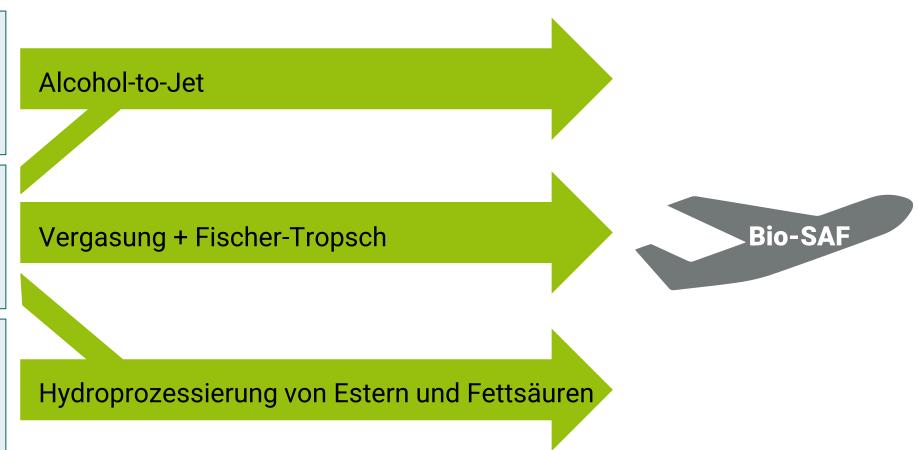
	Konversionsprozess	Abkürzung	Max. Blendrate
Annex A1	Fischer-Tropsch hydroprozessiertes SPK	FT	50 %
Annex A2	SPK aus hydroprozessiertem HEFA	HEFA	50 %
Annex A3	Synthetisierte Iso-Paraffine aus hydroprozessierten fermentierten Zuckern	SIP	10 %
Annex A4	Synthetisiertes Kerosin mit Aromaten aus der Alkylierung von leichten Aromaten aus Nicht-Erdölquellen	FT-SKA	50 %
Annex A5	Alkohol-to-Jet-SPK	ATJ-SPK	50 %
Annex A6	Katalytische Hydrothermolyse	CHJ	50 %
Annex A7	SPK aus Kohlenwasserstoff-hydroprozessiertem HEFA	HC-HEFA-SPK	10 %
Annex A8	Synthetisiertes Kerosin mit Aromaten aus dem ATJ-Prozess	ATJ-SKA	

- Weiterhin: Co-Prozessierung in konventionellen Erdölraffinerien (5 bis 10 % Blendrate)
- Evaluierung weiterer Konversionspfade bzw. der Erhöhung der Blendraten

Quelle: https://www.icao.int/SAF/saf-conversion-processes (zuletzt geprüft am: 31.10.2025)

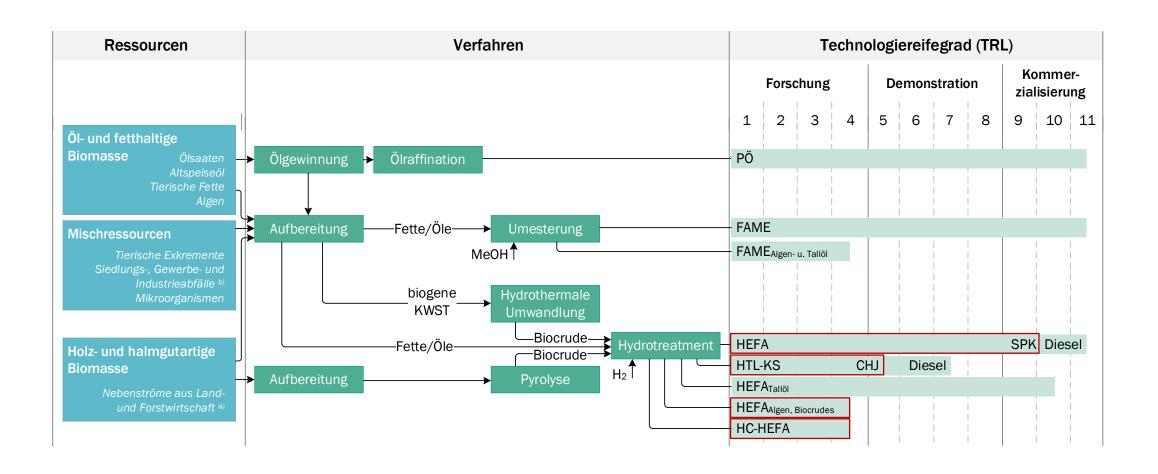
Haupt-Konversionspfade für Bio-SAF

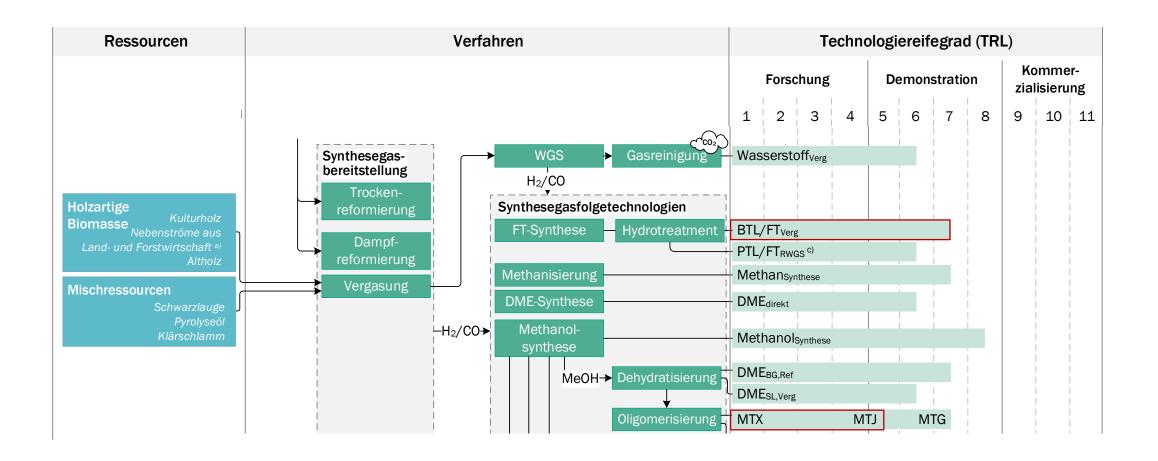
Zucker- und stärkehaltige Biomasse



Lignocellulosehaltige Biomasse und Mischressourcen

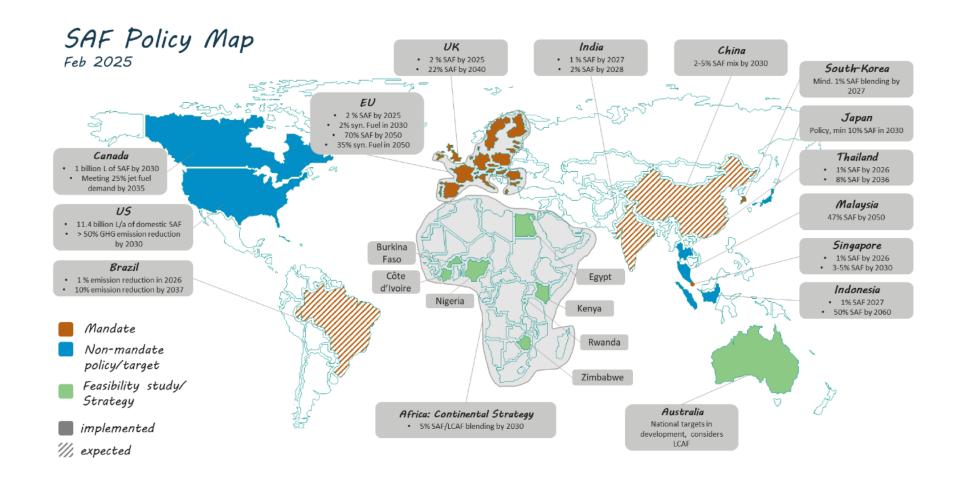
Öl- und fetthaltige Biomasse


Alkohol-Pfad


Technologien HEFA-Pfad

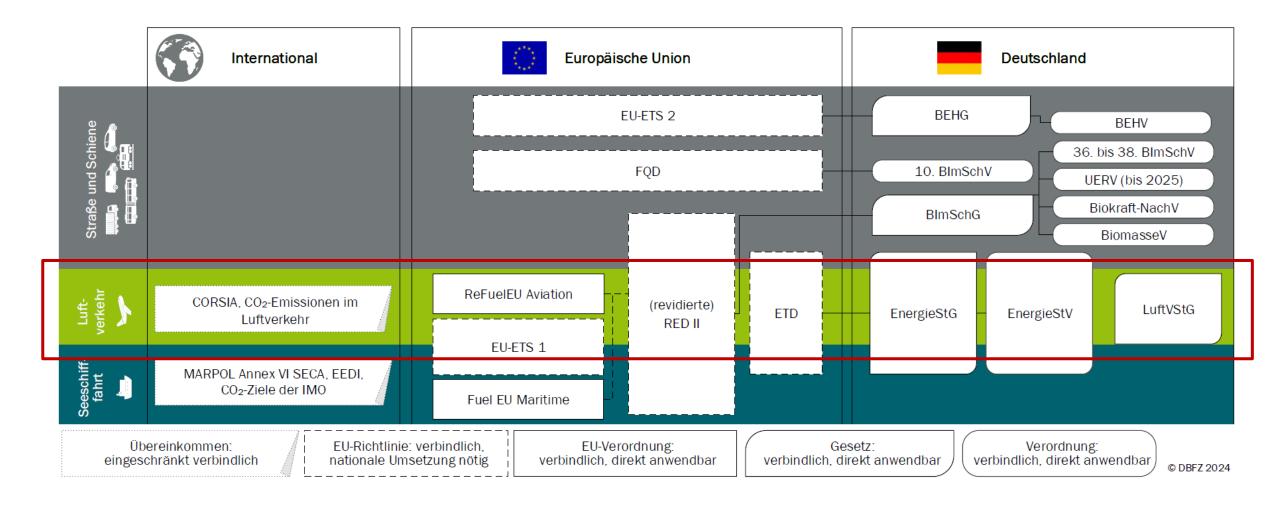
Synthesepfad aus Biomasse

Ausgewählte Stakeholder



Stakeholder	Standort	Biokraftstoff-Output (Stand 2024)		
Gevo, Inc.	Silsbee (USA) Lake Preston (USA)	290 t/a ATJ-SPK (Demonstrationsanlage) ab 2026 geplant: 187.000 t/a ATJ-SPK		
LanzaJet	Soperton (USA)	25.890 t/a ATJ-SPK		
Neste Oyj	Porvoo (Finnland) Singapur Rotterdam (Niederlande)	100.000 t/a HEFA-SPK 1 Mio. t/a HEFA-SPK 1,2 Mio. t/a HEFA-SPK (in Bau)		
World Energy	Paramount (USA)	HEFA-Diesel, SAF und Benzin		
Total Energies	La Mède (Frankreich)	500.000 t/a HEFA-Diesel, SAF und AdBlue		
Galp Energia	Sines-Raffinerie (Portugal)	240.000 t/a Diesel oder 180.000 t/a SPK		
Velocys, Inc.	Immingham (Großbritannien) Natchez (USA)	FT-SPK (Demonstrationsmaßstab, in Bau) FT-SPK (Demonstrationsmaßstab, in Bau)		
Euglana Co.	Yokohama (Japan)	CHJ		

Regulatorische Rahmenbedingungen


Überblick über SAF-Mandate

Regulatorische Rahmenbedingungen Überblick

Regulatorische Rahmenbedingungen EU

ReFuelEU Aviation

Ziele

- Erhöhung der Produktion und Nutzung nachhaltiger Kraftstoffe durch Flugzeuge
- Verringerung des ökologischen Fußabdrucks

Geltungsbereich

- EU-Flughäfen^a
- Flugzeugbetreiber^b müssen mind. 90 % ihres jährlichen Treibstoffbedarfs innerhalb der EU tanken
- Betankung mit der für den jeweiligen Flug benötigten Menge
- Verordnung ab 2024 verbindlich
- EU-weites Eco-Label für den Vergleich der Nachhaltigkeit von Flügen ab 2025 geplant
- Evaluation aller 4 Jahre ab 2027 von der EC

Funktionsweise

Festlegung von Mindest-Beimischungsquoten:

Ab	2025	2030	2032	2035	2040	2045	2050
SAF	2 %	6 %	6 %	20 %	34 %	42 %	70 %
RFNBO	0 %	0,7 %	1,2 % bzw. 2 %	5 %	10 %	15 %	35 %

Definition von Bio-SAF

- Biokraftstoffe mit THG-Einsparung von 50 %, 60 %, 65 %^c
 - Kerosin aus biogenen Rest- und Abfallstoffen (RED II Anhang IX Teile A und B)
- Andere Biokraftstoffe, die nicht auf Nahrungs- und Futtermittelpflanzen basieren (maximal 3 %)

Regulatorische Rahmenbedingungen international

CORSIA

Ziele

- CO₂-neutrales Wachstum des internationalen Luftverkehrs ab 2019, u. a. durch die Anwendung nachhaltiger alternativer Treibstoffe
- Flugverkehr mit Netto-Null-Emissionen im Jahr 2050

Geltungsbereich

- Internationale Flüge zwischen Ländern im Europäischen Wirtschaftsraum (EWR) und CORSIAteilnehmenden Drittstaaten
- Ab 2027 nur noch Ausnahmen für bestimmte Entwicklungsländer
- Luftfahrzeugbetreiber mit mehr als 10.000 t CO₂-Emissionen, die mit Flugzeugen mit mehr als 5,7 t Höchstabfluggewicht absolviert werden

Funktionsweise

- Globales, marktbasiertes Programm der ICAO
- Jährliche Meldung von CO₂-Emissionen durch Fluggesellschaften
- Kompensation von wachstumsbedingten CO₂-Emissionen^a durch den Erwerb von Offset-Zertifikaten >> Verringerung der Kompensationsverpflichtung durch Verwendung von CORSIA-Kraftstoffen

Evaluation zu 2026

- Evaluation des CORSIA-Programms bzgl. Erreichung der THG-Einsparungsziele durch die EC
- Danach ggf. anstelle von CORSIA Ausweitung von EU-ETS^b auf Flüge zwischen EU und Drittländern^b
- Ab 2027 Überprüfung im Abstand von drei Jahren

Regulatorische Rahmenbedingungen

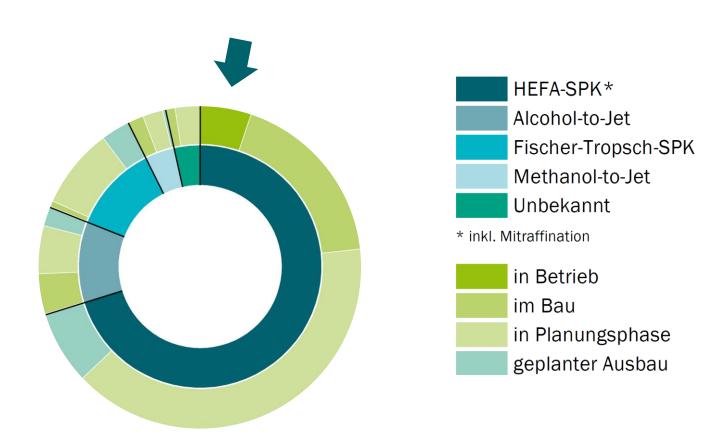
Weitere Regularien

Erneuerbare-Energien-Richtlinie RED II

- Einbeziehung des Flugverkehrs seit 2023
- Zuordnung von Ressourcen in Abhängigkeit von der Nutzung im Flugverkehr
- Festlegung von Mehrfachanrechnungen für bestimmte Anwendungen, z. B. Faktor 1,2 für fortschrittliche Biokraftstoffe im Flugverkehr

Europäischer Emissionshandel EU-ETS 1

- Jährlich sinkende Menge an erlaubten Zertifikaten im Flugverkehr seit 2012
- Ankauf von bzw. Handel mit Emissionszertifikaten für nationale und internationale Flüge im EWR, aus dem EWR nach UK und in die Schweiz sowie seit 2024 für Flüge von und zu EU-Regionen in äußerster Randlage
- Ab 2026 keine kostenlose Zuteilung von Zertifikaten mehr, ab 2025 Überwachung/Berichterstattung von Nicht-CO₂Effekten


Regularien, die auf Freiwilligkeit beruhen

Brasilien: RenovaBio | Kalifornien: LCFS | USA: IRA

Marktausblick

DBFZ

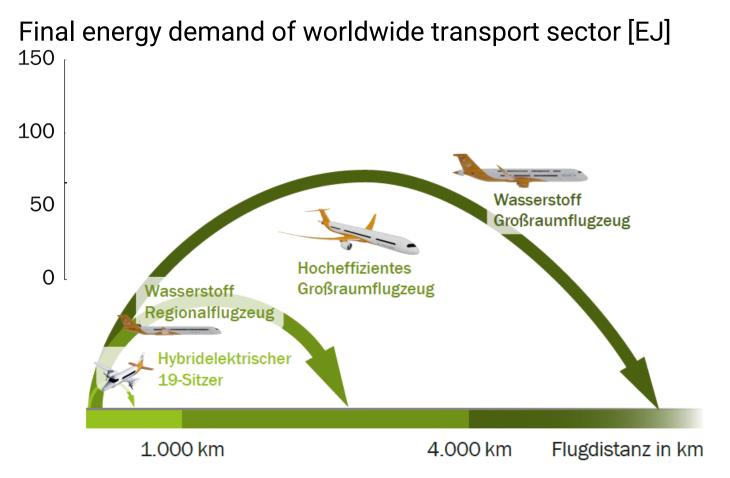
Weltweite Kapazitäten für erneuerbares Kerosin

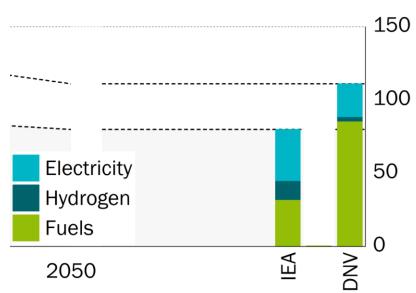
Geplanter Ausbau bis 2030: 32,1 Mio. t/a HEFA-SPK, ATJ, FT-SPK, MTJ

Status quo: 4 1,8 Mio. t/a Zumeist HEFA-SPK, etwas ATJ und CP-HEFA

TOP SAF User im Jahr 2024:

IAG International Airlines Group: 162 kt


Air France & KLM: 103 kt


DHL: 74 kt

Ausblick

Szenarien für den globalen Endenergiebedarf

Fuel demand

	2050
Aviation	14 – 22 EJ

Calculation; 1 Mtoe = 41,87 PJ = 11,63 TWh

Source: Schröder, J.; Görsch, K.; Lenz, C. N. (2025): Herausforderung Energiewende im Verkehr. In: Schröder, J.; Görsch, K. (Hrsg.) (2025): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 4-21. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27 und Eigene Abbildung nach [Batteiger V., Penke C. (2025): Impuls | Energiewende in der Luftfahrt – Technische Herausforderungen. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 17-18. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27]

Fazit

Klimaschutz im Flugverkehr

- Neben technischen und operationellen Verbesserungen sind erneuerbare Kraftstoffe entscheidend, um die Klimaziele im Luftverkehr zu erreichen.
- Für ihre Bereitstellung benötigt es:
 - den Hochlauf fortschrittlicher Biokraftstoffe,
 - den Aufbau von Produktionskapazitäten für bio- und strombasierte Kraftstoffe,
 - die Erhöhung der Beimischungsgrenzen über 50 % hinaus sowie
 - die Ausweitung der Zulassung auf weitere Technologiepfade.
- Einbeziehung von Nicht-CO₂-Effekten in die Klimaschutzbewertung notwendig

Dr.-Ing. Kati Görsch +49 (0)341 2434-329

kati.goersch@dbfz.de

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig www.dbfz.de

